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Abstract

We address a number of comparative issues relating to the performance of failure

prediction models for small, private firms. We use two models provided by vendors, a

model developed by the National Bank of Belgium, and the Altman Z-score model to

investigate model power, the extent of disagreement between models in the ranking of

firms, and the design of internal rating systems. We also examine the potential gains from

combining the output of multiple models. We find that the power of all four models in

predicting bankruptcies is very good at the one-year horizon, even though not all of the

models were developed using bankruptcy data and the models use different statistical

methodologies. Disagreements in firm rankings are nevertheless significant across

models, and model choice can have an impact on loan pricing and origination decisions.

We find that it may be possible to realize important gains from combining models with

similar power. In addition, we show that it can also be beneficial to combine a weaker

model with a stronger one if disagreements across models with respect to failing firms are

high enough. Finally, the number of classes in an internal rating system appears to be

more important than the distribution of borrowers across classes.

JEL classification: D40, G21, G24, G28, G33

Keywords: Basel II, failure prediction, internal ratings, model power, rating systems, ROC

analysis
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1. Introduction

Failure prediction models are defined as models that assign a probability of failure or a

credit score to firms over a given time horizon.2 The development of the Basel II

framework has stimulated vendors to offer such models to banks opting to use the internal

ratings-based approach for calculating their regulatory capital requirements. Indeed, one

of the inputs that banks adopting the internal ratings-based approach must provide is an

estimate of the probability of default (PD). Failure prediction models developed by vendors

are often used by banks as an off-the-shelf product or, alternatively, as a basis for

development and benchmarking of their internal rating systems. While there exists a large

academic literature on failure prediction models (see, e.g., Balcaen and Ooghe, 2006, for

a review), much less is known about failure prediction models offered by vendors.

This paper explores empirically a number of comparative issues relating to failure

prediction models for small, private (i.e. non-listed) firms. It investigates whether some

models are better at differentiating defaulting and non-defaulting firms than others (the

"performance" or "power" of models), the extent to which different failure prediction

models may yield significantly different rankings for the same firm (i.e., the extent of

"disagreement" between models), and the extent of gains that can be realized from

combining the predictions of multiple models. The paper also analyzes the design of bank

internal rating systems by looking at the performance of systems with differing numbers of

classes and distributions of borrowers across classes.3

To investigate these issues, we make use of four failure prediction models: two developed

by vendors and which were chosen among a set of vendor models in common use by

banks, a model developed by the National Bank of Belgium (NBB), and the Altman Z-

score model for private firms.

We follow the literature and use Receiver Operating Characteristic (ROC) curves to

investigate the power of our four failure prediction models (see, e.g., Basel Committee,

2005, Stein, 2005, Blöchlinger and Leippold, 2006, and Satchell and Xia, 2007). The ROC

curve is constructed by ranking firms from the riskiest to least risky, then by plotting the

percentage of non-defaulting firms that would have to be denied credit (i.e., excluded from

the sample) in order to avoid lending to (i.e., to exclude) a certain percentage of defaulting

firms. The ROC curve can thus be used to identify the Type-1 and Type-2 errors

2 In this paper a failure is defined as a bankruptcy or a default.
3 We do not address the issue of model calibration; i.e., whether PDs produced by the models (or implied by
the credit scores) are in line with those observed in practice.
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associated with the choice of any particular cut-off point for excluding firms from the

sample.4 The area under the ROC curve is one of the indicators of the performance of the

model; the larger this area, the more powerful the model.

Banks adopting the internal ratings based approach of Basel II may choose between

differing vendor models to compute the PDs of their loans. However, little is known about

the level of disagreements between these models or about their respective degrees of

power. It is also unclear whether banks can benefit from working with several models to

develop their own internal rating systems and, if so, by how much. These issues are

important not only for banks, but also for supervisors, who are responsible for assessing

the banks' validation of their internal rating models.

In their internal rating systems banks have to assign each loan applicant to a class or

bucket. We also investigate how model performance changes as we vary the number of

rating classes and the distribution of borrowers across the classes. This is important,

since very little is known about how the granularity of a bank’s internal rating system

affects the performance of the system, or about the interaction of the system with the

credit quality distribution within the portfolio.

The four models that we test were developed on data for Belgian firms from the 1990s,

although the models differed somewhat in the sample of firms used and the exact time

period.5 These models were developed using a set of failing and non-failing firms, where

failure may represent default for some models and entry into bankruptcy for others.6 We

apply these models to "out of sample" data; namely, default data for Belgian firms in

existence in 2001 or 2004. More precisely, in investigating model power, we first estimate

credit scores and PDs (depending on the output of the specific model) using 2001 and

2004 balance and non-balance sheet information for more than 36,000 small Belgian firms

with total assets below € 50 million. We then use bankruptcies in 2002 and between 2002

and 2006 to assess failure predictions. We compute one-year failure predictions for the

firms in 2001 and the firms in 2004, and we compute five-year failure predictions for the

2001 firms.

4 See the appendix for more details.
5 The NBB model was developed using a sample of firms over the period 1991-1998, while we created a
Belgian version of Altman's Z-score model using a sample of firms over the period 1995-1998. Note that the
sample used to develop each model ranged from about 40,000 single-obligors for Altman’s Z-score to several
100,000 single-obligors for one of the vendor models.
6 Bankruptcy refers to the process of entering bankruptcy or filing for a "concordat", a procedure similar to
Chapter 11 in the US, though much less frequently used in Belgium.



5.

The models under consideration differ in their inputs and methodologies. Although each

model uses balance sheet variables among its inputs, some models also use non-balance

sheet or qualitative variables, such as the number of employees or the legal status of the

firm. All of the models use solely microeconomic variables; none uses macroeconomic

variables.

While the NBB model (see Vivet, 2004) and the Altman Z-score (see Altman, 2000) are

based on logit and discriminant analysis, respectively, the methodologies used by the two

vendor models involve a variety of statistical techniques, including the possibilities of logit,

discriminant analysis combined with mathematical techniques such as decision trees,

probit analysis with transformations, and a utility-based framework.

Our principal results are as follows. First, the models perform relatively similarly, and the

1-year prediction models very well, when performance is measured by the area under the

ROC curve. This result is interesting in light of the above-mentioned differences between

the four models analyzed. Nevertheless, there is some variation in the areas under the

ROC curves obtained for each model. We use a method presented by Stein (2005) to

obtain an idea of the potential monetary impact of these differences in areas. This

technique illustrates how the area under an ROC curve for a particular failure prediction

model can be translated into basis points of return on loan originations. We show that

even relatively small differences in ROC areas across models can translate into significant

differences in monetary returns.

Second, although the models are relatively similar in terms of power, they frequently

disagree on firm rankings. The extent of disagreement can be considerable, both in terms

of the percentages of firms that are assigned to different classes by different models and

the severity of disagreement; e.g., firms being classified by one model above the 95th

percentile in risk but being classified by another model at below the median level of risk.

This implies that, if banks use the PD or credit score produced by a failure prediction

model for loan pricing or origination decisions, model choice can have a significant impact.

For example, we find that if banks were to reject all loan applicants classified above the

85th percentile in risk, and if two banks were to use different failure prediction models,

between sixteen and twenty percent of applicants would find their loan applications

rejected by one bank but accepted by the other, depending upon the model pairs being

considered.

A third result is that combining the assessments of different models can improve

performance. This result is in fact intuitive; the output of a failure prediction model

represents a signal about the creditworthiness of a firm and, given that the signals
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produced by different models are not perfectly correlated, performance should be

improved by making use of the combined information from multiple signals. However, we

also investigate whether there is a trade-off between combining the output of more models

versus using fewer models with higher power. We find that the trade-off exists, but it is

ultimately linked to the extent of disagreement between models. Perhaps surprisingly, we

find that if the disagreements regarding failing firms are significant enough, it is possible to

combine two models, where one is less powerful than the other (in the sense that the

ROC curve lies strictly below that of the other), and still achieve an improvement over the

performance of the stronger model.

Finally, we consider the design of banks' internal rating systems. We find that increasing

the number of classes generally increases the performance of an internal rating system by

more than varying the distribution of borrowers across classes (holding the number of

classes constant). This suggests that the number of classes of an internal rating system is

more important than the particular distribution of borrowers across the classes.

The paper proceeds as follows. Section 2 discusses model power. Section 3 presents

results relating to model disagreement. Section 4 investigates the benefits of combining

models. Section 5 examines the design of internal rating systems. Section 6 concludes.

2. Model power

We are interested in knowing something about the power of the four models; i.e., whether

the ability to distinguish between failing and non-failing firms differs across the models.

Analysing the power of a model requires comparing its output (credit score or PD) with

actual data on failure. We construct a measure of model performance by computing the

ROC curve for each model using the bankruptcy data for our sample of firms.

However, because not all of the models under consideration produce the same type of

output (score vs. PD), we re-scale credit scores and PDs in the following way. First, for

each model, we rank-order firms from lowest to highest credit risk based on their score or

PD. Then, we allocate the firms into a certain number of classes, or "buckets", according

to a pre-defined distribution. In other words, we create a "rating system". It is then possible

to compare, across models, the frequency of bankruptcy of the different classes, as well

as the power of models whose output is now based on the same number of classes.
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In order to undertake this re-scaling, however, it is necessary to define the number of

classes that will be used. For illustrative purposes, the risk distribution used in this and the

following two sections consists of seven classes and is based on the output of one of the

vendor models which produces credit scores. More precisely, we group the multiple

scores of that particular model into seven classes. Then we group the firms of the other

models into seven classes in such a way that each model has a similar percentage of

firms in a given class. We choose to work with a seven-class system in part to guarantee

that, with only a small number of exceptions, bankruptcy frequencies of higher-risk

classes are higher than frequencies for lower-risk classes.7 However, none of the paper's

qualitative results regarding the differences across models in power or rankings of firms

depends upon this specific number of classes or the "mapping" used for the distribution of

classes. In Section 5, we use the technique described in this section to construct several

systems with ten and seventeen classes. We investigate the impact of these alternative

numbers of classes (and distributions of borrowers across classes) on the power of a

given model.

Table 1 reports the one-year and five-year bankruptcy frequencies for each of the seven

classes for each model. One-year frequencies are reported for the 2001 and 2004 data,

while five-year frequencies are reported for the 2001 data.8 For each model, class 1

contains roughly the 1.4 percent of firms that are classified as the least risky; i.e., with the

lowest PDs or highest credit scores. Class 7 contains roughly the 3.3 percent of firms that

are classified as the riskiest; i.e., with the highest PDs or lowest credit scores. Classes 2

to 5 represent intermediate levels of risk and contain around 20 percent of firms each,

while class 6 contains around 10 percent of firms.

Table 1 reveals that the one-year and five-year bankruptcy rates are generally increasing

across classes and comparable across the four models, both in the 2001 and 2004

samples, which suggests that the seven classes reflect increasing degrees of credit risk.

Table 1 also shows changing bankruptcy frequency rates over time. Due to the cyclical

downturn in 2001, the percentage of bankruptcies in the entire sample in 2002 (0.79%)

7 Note that seven is the number of classes one would have with ratings data when working with whole-grade
rating categories (Aaa, Aa...Caa). Hanson and Schuermann (2006) use ratings data from Standard and Poor's
to test for monotonicity of observed PDs with ratings. They find that with the notch-level scale (i.e., the scale
with the pluses and minuses included), PDs are not monotonically increasing with lower ratings for the
investment-grade rating categories. When Hanson and Schuermann reduce the number of classes to the
whole-grade scale, much more monotonicity is observed.
8 The distribution of firms in the 2001 sample is slightly different for one-year and five-year bankruptcy
frequencies. This is because a few firms have exited the database between 2002 and 2006 for reasons other
than bankruptcy (e.g. mergers, acquisitions etc.).
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was higher than the percentage of bankruptcies in 2005 (0.56%). The percentage of

bankruptcies occurring between 2002 and 2006 was 3.52% (0.70% on annual basis).

Figures 1 and 2 present the ROC curves for the one-year and five-year predictions based,

respectively, on 2004 and 2001 data. Table 2 reports the area below each of the curves.9

Figures 1 and 2 reveal that all four models perform considerably better than would

randomly assigning firms to different classes, a situation which is depicted by the 45-

degree line. Table 2 indicates that the performance of the NBB model and the two vendor

models is very good, and quite similar, for the 1-year ROC curves. The area under the

ROC curve for each of these models exceeds 0.8.10 Interestingly, the Z-score model,

whose coefficients have been re-estimated on Belgian data, has an area under the ROC

curve of .78. Not surprisingly, the four models perform less well at the five-year horizon,

with areas ranging between .71 and .75 for the NBB and the two vendor models and .64

for the Z-score.

The similar performance of the four models, which were not developed on identical

measures of failure (bankruptcy versus default) and which use different statistical

methodologies, is interesting in at least two respects. First, it suggests that the definition

of failure used for model development may not matter as much as previously expected, at

least for European firms.11 Second, it tends to confirm results of previous studies which

indicate that the power of different methodologies is often very similar (see Ooghe et al.,

2005, for a review).

Nevertheless, there are some differences across the models. Figure 1 shows, for

instance, that the one-year ROC curves for the two vendor models and the NBB model

cross each other, and the curve for the Z-score model crosses that of Model 2. When two

ROC curves cross, comparison of the areas underneath the curves is not sufficient to

determine which model has greater power. Which model would perform better depends

upon the specific application for which the model is used. Observation of the curves in

9 The area under the ROC curves varies very little (around .02) when using the actual output values of the
models (credit scores or PDs) instead of our seven classes (see Section 5).
10 Chi-square tests cannot reject the null hypothesis that the areas under the ROC curves of the NBB model
and Model 1 are equal, both at the 1-year and 5-year horizons (5% confidence level). The differences in areas
under the ROC curve of all other model pairs are statistically significant. According to Hosmer and Lemeshow
(2000) models with an area under the ROC curve between .7 and .8 are often regarded as having
"acceptable" discriminatory power, while models with an area between .8 and .9 can be considered as having
"excellent" discriminatory power. This classification, however, is not universally accepted. For example, Lingo
and Winkler (2007) argue that the value of the area under the ROC curve obtained by a given model will
depend upon the characteristics of the sample of borrowers to which the model is applied.
11 According to Korablev (2005), 80% of European firms that default also enter bankruptcy, whereas only 50%
of U.S. defaulters enter bankruptcy.
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Figures 1 and 2, however, suggests that in terms of identifying firms with high default risk,

Model 2 and the Z-score would appear to perform somewhat less well than would the

NBB model or Model 1, both at the one-year and five-year horizons. For instance, with

respect to the 1-year ROC curves shown in Figure 1, we see that if the failure/non-failure

cut-off were placed at the level of the fifteen percent of non-failing firms with the lowest

credit scores (or highest PDs), the NBB model and Model 1 would exclude roughly 80

percent of all failing firms, compared with 70 percent for Model 2 and 60 percent for the Z-

score.

It might also be of interest to translate the information from an ROC curve, and the

differences across the models in the area under the curve, into a monetary measure of the

gain to a bank from using a particular model for its loan origination decisions. We illustrate

how this might be done, following a methodology employed by Stein (2005).12 The idea is

as follows. Suppose that a given cut-off class n is chosen, such that loan applicants

classified in class n or above are rejected (recall that higher classes correspond to higher

risk firms), and all applicants falling in a class below n are accepted. Identifying the point

on the ROC curve that corresponds to the cut-off class n will allow identification, from the

X-axis, of the percentage of non-defaulting applicants that will be excluded by use of the

cut-off (call this percentage 1 kn), and the Y-axis will allow identification of the

percentage of defaulting firms that will not be excluded (call this percentage 1 ROC(kn)).

The Type-1 error (i.e., the risk of rejecting a "good" borrower) in using this cut-off is thus

equal to 1 kn and the Type-2 error (i.e., the risk of accepting a "bad" borrower) is equal

to 1 ROC(kn).

Type-1 and Type-2 errors may be costly for the bank. For example, Type-2 errors may

involve bankruptcy or workout costs, as well as loss given default (LGD). Type-1 errors

can cause the bank to forego some "relationship-based" income, above and beyond the

interest spread on a loan to a firm. If we can parameterize these costs, we can compute

the expected total per-Euro benefits and costs per loan applicant of using this cut-off. We

can then compute the net benefits for every possible cut-off point on the ROC curve and

identify the optimal or benefit-maximizing cut-off.13

12 Other authors have used different techniques to monetize model performance. See for example Zhou et al.
(2005) and Jankowitsch et al. (2007).
13 Stein (2005) presents a straightforward technique for identifying the profit-maximizing cut-off class.
Blöchlinger and Leippold (2006) also present a method for translating the information from the ROC curve into
monetary terms, not only through the use of cut-off points for accepting or rejecting loan applicants but also for
loan pricing.
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For illustrative purposes, we follow Stein (2005) and assume, for simplicity, that the cost to

the bank of a Type-1 error is zero. That is, there is no cost to the bank of rejecting a non-

failing applicant, other than the lost benefit of the interest rate spread on a loan to that

applicant, which our benefit function implicitly captures. Type-2 errors do impose a cost,

composed of bankruptcy or workout fees and the LGD. Following Stein, we assume that

loans have a one-year maturity, with principal and interest due at maturity and that failing

firms default at maturity without paying accrued interest. The cost of the Type-2 error will

be given by:  (Underwriting fee) + Discounted present value(Workout fees + LGD). The

monetary benefit per-Euro of a loan to a non-defaulting loan applicant will be given by:

Underwriting fee + Discounted present value(Interest spread on loan).

Table 3a shows the assumptions on parameter values for our benchmark case. Given

these benchmark values, the per-Euro cost of the Type-2 error equals

.02 + .35-.005 + = .3508
1.04

. The monetary benefit per-Euro of a loan to a non-defaulting

loan applicant equals .
.0125005 + = .0170
1.04

. The expected net monetary return in the

benchmark case, then, of applying the cut-off class n for loan origination decisions is

given by:

R = (1-PD)  (kn)  (.0170)  (PD)  (1 ROC(kn))  (.3508).

The first term on the right-hand side of this expression represents the expected benefit

from extending a loan to non-defaulting borrowers. For any given pool of loan applicants,

the expected proportion of this pool that will receive a loan and will not default is given by

(1-PD)  (kn). The expected proportion that will receive a loan but will default is given by

(PD)  (1 ROC(kn)). Note that as the cut-off point is moved to the left on the ROC curve,

the proportion of non-defaulting loan applicants receiving a loan increases, which

generates a benefit; however, the proportion of borrowers defaulting also increases, which

increases costs. The optimal cut-off point balances these two effects.

Suppose that no model is used for screening borrowers and that the bank accepts all loan

applications (which would be equivalent to using a "cut-off" point at the extreme left-hand

corner of the ROC diagram for any given model). Suppose, also, that, as in our

benchmark case, the one-year PD is 2%. Then, the expected monetary return from this

strategy would be equal to (.98) (.0170)  (.02) (.3508) = 96 basis points. Table 3b

illustrates how changing the parameter assumptions can affect the costs and benefits of

the no-screening strategy. This table shows that the net return from using no screening is
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sensitive to variations in the parameter values; the return across the various scenarios

shown in the table ranges from 26 to 167 basis points.

Table 2 reports, for the benchmark parameter assumptions, the expected per-Euro return

that a bank would enjoy with each of the different models, for a one-year loan and where

the optimal cut-off class has been determined separately for each model.14 The results

indicate that for the one-year horizon, there is a net expected per-Euro gain of between 17

and 30 basis points per Euro per loan applicant from using any one of the four models to

screen borrowers. The gain to the bank in moving from the Z-score to the NBB model is

13 basis points, although there is only a two-basis point gain in moving from Model 1 to

the NBB model.

The fact that the monetary value of the no-screening strategy is sensitive to parameter

assumptions suggests that the monetary gains in moving between models will also

depend upon the parameter assumptions underlying the calculation of the costs and

benefits of using a particular cut-off point and model. However, the benefits in moving

from one model to another, or in moving from no screening to a given model, are much

less sensitive to changes in parameter values than is the net return to no screening. For

the scenarios illustrated in Table 3b, the gain in moving from the Z-score to the NBB

model ranges from 5 basis points (for the scenario with PD = 1%) to 20 basis points (for

the scenario with PD = 3%). For all of the other scenarios, the gain lies between these two

values.

We might also be interested in translating the gains in basis points per loan to a monetary

figure for the entire loan portfolio of a bank. Stein (2005) presents data for small, medium-

size, and large U.S. banks. For a medium-size bank (with total assets between 10 and 50

billion USD), the estimated amount of new loan originations per year in 2002 USD was

4,275 million USD. Using this figure, we observe that the 13 basis point monetary gain to

the bank from moving from the Z-score model to the NBB model would generate an

increase in revenues of 5.6 million USD.

14 We do not calculate the expected profit for a five-year loan, as it would require considerably more
assumptions, such as the timing of defaults, than for a one-year loan. The results for the one-year loan are
already quite sensitive to parameter assumptions, and results for a five-year loan would exhibit even greater
sensitivity.
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3. Model disagreement

To what extent do models differ in their "rankings" for the same firm? Is it common to

observe strong disagreement between models, for example, where one model classifies a

firm as being of very high risk but another classifies the firm as low risk? We investigate

such questions in this section.

One potential indication of the degree of agreement across models is given by correlation

values. Blöchlinger and Leippold (2006) suggest, for example, that it is common for the

credit scores assigned by banks to be very highly correlated, given that differing failure

prediction models make use of data from firms' balance sheets and income statements.

These authors assume a correlation value of 0.8. We find significantly lower correlation

values among our failure prediction models. In particular, while the Spearman rank

correlation coefficient between the NBB model and Model 1 is higher than 0.7, the

correlation coefficients for all other model pairs do not exceed 0.5. The correlations

between the Z-score and the other models are the lowest, and do not exceed 0.4.15

We are also interested in the severity of disagreement. We investigate this by comparing

the ordinal rankings of firms across the different models and identifying firms which are

classified in very different classes by pairs of models. Ideally, we would like to do this by

looking at the percentage of firms for which PDs or scores of one model are above a

certain cut off (say, 95th percentile) while the PDs assigned by another model to the same

firms are below another cut off (say, the median), and vice versa. However, because at

least one of our models does not produce a continuum of scores, we cannot use this

exact method.16 Nevertheless, we can undertake a similar type of comparison in the

context of our seven-class system. In particular, we can look at firms classified in the

highest risk class (class 7, which corresponds to the 96th percentile) by one model and

classified in or below the median risk class (class 4) by another model.

Table 4a presents these "severe" disagreement rates for high-risk firms (calculated as the

percentage of class-7 firms of a given model which are classified in the median risk class,

or below by another model). Table 4b shows "severe" disagreement rates for low-risk

firms (calculated as the percentage of class-1 firms of a given model which are classified

in the median risk-class or above by another model). Results are illustrated for the year

15 Jacobson et al. (2006), using data from two major Swedish banks, also found low correlations between the
internal ratings of the two banks for the firms borrowing from both banks.
16 Also, we cannot directly compare the PDs across models, since not all of the models produce PDs and
since we do not have enough historical data to map model scores into PDs.
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2004 (1-year predictions); however, results for 2001 (1-year and 5-year predictions) are

quite similar.

Two interesting results emerge from the tables. First, disagreement rates are quite

variable, but go up to rather high numbers (40 to 50 percent), depending upon the model

pair chosen.17 Second, the Z-score model is the model which disagrees the most with the

other models, especially for firms which are classified as low-risk by the other models.

As another way of investigating the issue of disagreement between models, we calculated

the percentage of firms that would be granted credit from one model but denied credit by

another if class 6 were used as the cut-off class for loan approval; i.e., firms assigned to

classes 6 and 7 by a model would be denied credit and firms assigned to classes 1-5

would be granted credit.18 We undertook this exercise (not reported in a table) using the

four models at the 1-year horizon in 2004. We found that, for each pair of models, an

average of 16-20 percent of the total number of firms would be turned down by one model

but would be accepted by another (the remaining 80 percent of firms would either be

accepted or rejected by both models). That is, for any given model pair, roughly 8-10

percent of the firms that would be denied credit by one model would be accepted by the

other, and another 8-10 percent of the firms that would be accepted by the first model

would be denied credit by the second.

These relatively high disagreement rates between models suggest that if loan pricing and

origination decisions are based on the class to which the firm is assigned, model choice

can have a significant impact, including on the bank's economic capital. In line with this

result, Jacobson et al. (2006) find that substantial differences exist between the internal

rating systems of the two major Swedish banks that they study, and these differences also

translate into significant differences in credit loss distributions for the two banks' portfolios.

17 We have computed disagreement rates in a similar manner for several systems with differing numbers of
classes and distributions (for example, the systems illustrated in Table 6 in Section 5). Although the particular
percentages of disagreements vary according to the number of classes and the distribution of firms across
classes, depending upon how different the percentiles are relative to our seven-class system, the qualitative
nature and general magnitude of the results on disagreements do not change.
18 The choice of class 6 is made for illustrative purposes. This class corresponds to the cut-off class which
maximizes the monetary benefits associated with the choice of the NBB model, given the benchmark
parameters (see Section 2).
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4. Combining models

The high rates of disagreement observed among the four models, together with the good

performance of each, suggests that there may be some benefits for banks in combining

the failure assessments of different models. As mentioned in the introduction, the idea is

that the output of a failure prediction model represents a signal about the creditworthiness

of a firm and, given that the signals produced by different models are not perfectly

correlated, performance should be improved by using multiple signals. Consistent with this

idea, a recent contribution by Löffler (2007) finds that combining failure predictions (credit

ratings and market-based measures of credit risk) improves the prediction of default over

the use of a single measure.

One question of interest, however, is whether there is a trade-off between combining the

output of more models versus using fewer models with superior performance. It is intuitive

that when the ROC curves of two models cross, a combination of the two models may

perform better than either model separately. What is less obvious is whether it is possible

to gain from combining two models when the ROC curve of one lies entirely below the

ROC curve of the other.

In this section, we consider a number of simple techniques that a bank might use to

combine the assessments of different failure prediction models. In particular, we examine

the following combination rules: the minimum class of the models under consideration, the

maximum class, the median of the classes and the average of the classes.19 Note that

when a firm is assigned to different classes by different models, taking the average of the

classes may give a number which is in between two classes; e.g., the average of 7 and 6

gives 6.5. If we do not round this number up or down, we have effectively created a "new"

class. In fact, starting with our seven-class system, taking the average of firm

classifications across different models yields a system based on 13 classes when 2

models are combined, 19 classes when 3 models are combined and 25 classes when 4

models are combined. Interestingly, this somewhat artificial increase in the number of

classes can yield an area under the ROC curve of the combined models that is greater

than the area for the most powerful of the single models, even when other simple

combinations do not yield an increase in the area. In order to maintain the number of

19 The standardized approach to credit risk of the Basel II framework specifies that banks working with two
credit ratings must use the highest risk (i.e., maximum) assessment; banks working with three credit ratings or
more must use the highest of the two lowest risk assessments (see Basel Committee, 2006).
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classes constant when taking the average, we also present results for the average

"rounded up" (e.g., a 6.5 is rounded to 7) and "rounded down".20

Tables 5a and 5b report the power (as measured by the area under the ROC curve) of

each of the 7 combinations of models for 1-year and 5-year predictions respectively. Table

5a also reports the associated returns in basis points for the 1-year combinations, using

the benchmark parameter assumptions from Table 3. Note that the median for two models

is equivalent to the average; therefore, the median of the two-model combinations is left

blank in the tables.

Several results emerge from the tables. First, the area under the combined-model ROC

curve corresponding to the best performing model combination generally increases with

the number of models being combined.21 Table 5a indicates that the difference between

the area under the ROC curve of the most powerful single model and the most powerful

combination of models for the 1-year predictions is equal to .041 (between the NBB model

and the average of the four models). The table also shows that a bank would save close

to 5 bps per annum per-Euro approved if it switched from the NBB model to the average

of the four models. Table 5b shows that for the 5-year predictions the difference between

the area under the ROC for the most powerful single model and the most powerful

combination of models is 0.036 (between Model 1 and the average of Model 1, Model 2,

and the NBB model).

Note, however, that the particular method chosen by a bank to combine the output of

different models seems to matter. For example, looking across the differing combination

techniques at the 1-year horizon for a given set of models, we observe that the area under

the ROC curve of the most powerful and least powerful combination of models differs by

as much .05 for two-model combinations (for Model 2 and the Z-score), by 0.061 for three-

model combinations (Model 1, Model 2, and the Z-score) and 0.065 for the four-model

combinations.22 If we perform a similar exercise for the associated profits, we find

differences up to 11 bps for the two-model combination and 13 bps for the three and four-

model combinations.

A second result is that for every combination of models except one (Model 2 and the Z-

score) at the 1-year horizon, the average performs the best. As mentioned above, this is

due at least in part to the fact that taking the average without rounding increases the

20 We also do this for the median rounded up and down when combining four models.
21 The main exceptions occur when the Z-score 5-year model is combined with other 5-year models.
22 All the differences in areas under the ROC curve mentioned in this section are significant at the 5% level.
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number of classes, which causes the area under the ROC curve to increase relative to

other model combinations that maintain the seven-class system.23 As we show in Section

5, increasing the number of classes in an internal rating system generally increases the

area under the ROC curve. This effect is especially noticeable when working with an initial

system with seven classes. If we were to use the average to combine models when the

individual models already have a large number of classes, the gains would not be as

large.

Third, although the average is the combination of models that delivers the highest power

in 1-year models, it does not necessarily yield the greatest increase in monetary return

relative to other model combinations. Indeed, combinations such as the maximum, the

median, or the average rounded down often deliver equal and, in several cases, higher

returns than does the average. Whereas the higher power of the average is explained

partly by the higher number of classes generated by this method, the returns are

determined by the optimal cut-off class. The changing distribution of firms across the

classes due to combining the models explains why the optimal cut-off class and/or the

magnitude of the costs and benefits associated with a given cut-off class will differ for the

combined models relative to a single model.

Fourth, we find instances where combining the Z-score model with other models whose

ROC curves lie strictly above the Z-score curve leads to a gain in power. For the 1-year

models, a gain can be achieved by combining the Z-score model with any of the other

models, although for the NBB model the only combination with the Z-score model which

achieves a gain is the average, which increases the number of classes. For the 5-year

models, combining the Z-score with the other models does not increase performance.

The intuition for the result that combining a stronger with a weaker model can lead to a

gain in power is related to the degree and type of disagreements between the two models.

In order for the performance of the stronger model to be improved by combining it with a

weaker model, there must be sufficient disagreement between the models relating to firms

which ultimately default. In other words, the weaker model must assign a minimum set of

firms which ultimately fail to higher risk classes than does the stronger model. If the

weaker model never assigns to high-risk classes any defaulters that the stronger model

“misses” and if the weaker model is weaker only because it identifies fewer defaulters in

23 Note that the model combinations which maintain the seven-class system nevertheless result in differing
percentages of firms in each class than for the original models.
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the high risk classes than does the stronger model, then there will be no gain from

combining the two models.

As an illustration of this idea, comparison (unreported) of the 1-year Z-score model and

Model 1 reveals that 44% of the defaulting firms that the Z-score assigns into class 7 are

assigned by Model 1 to a class lower than class 7. In addition, 28% of the defaulting firms

that are assigned to class 6 by the Z-score model are assigned to a lower class by Model

1. On the other hand, comparison of the Z-score and the NBB models indicates that only

21% of the defaulting firms that the Z-score assigns to class 7 are assigned to a lower

class by the NBB model, and only 20% of the defaulting firms assigned to class 6 by the

Z-score model are assigned to a lower class by the NBB model. These observations

suggest that it is more likely that combining the Z-score model with Model 1 will lead to a

gain in power than will the combination of the Z-score model with the NBB model. This is

indeed the case, as is illustrated in Table 5a.

While it is necessary for the weaker and stronger model to disagree "enough" on

defaulters in order for a combination of the models to achieve a gain in power, this is not

sufficient to achieve a gain. It is also necessary for the models not to disagree “too much”

with respect to non-defaulting firms. Much of the gain from combining models comes from

“adding” more defaulting firms to higher risk classes than when using only one model. If,

in addition, too many non-defaulting firms are also added to the high-risk classes, the

ROC curve for the combined model will become flatter, rather than steeper, than the ROC

curve for the stronger model and will lie below the curve for the stronger model. This is

what appears to be occurring when the 5-year Z-score model is combined with the other

5-year models.

This discussion demonstrates that simple comparison of the areas under ROC curves or

the shapes of the curves (i.e., whether ROC curves of different models cross) is not

sufficient to determine whether gains can be achieved from combining models. Another

way of saying this is that the relative sizes of Type-1 and Type-2 errors do not provide

sufficient information to draw conclusions regarding the gains from combining models.

Rather, the identities of the firms making up the Type-1 and Type-2 groups for each model

are important. The more defaulters that are "missing" from the highest-risk classes of one

model but that are "captured" in the highest-risk classes of another model, the more likely

will it be that a combination of the models will increase power relative to use of a single

model. That being said, we conjecture that if the difference in ROC curve areas is "too

large", then combining a weaker and a stronger model will result in a shift of too many
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non-defaulters relative to defaulters into higher risk classes for the combination of models

to achieve a gain in power.

5. Design of banks' internal rating systems and model power

In designing the architecture of their internal rating system, banks must choose a number

of parameters which include, among others, the number of classes in their system and the

distribution of borrowers across these classes (see, e.g. Carey and Tracey, 1998).

Whereas Basel II requires banks to have a minimum of seven buckets for non-defaulting

borrowers and one for defaulters, banks differ widely in the number of classes they use,

and they may work with internal rating systems based on more than twenty buckets.

Ughetta (2006) reports for instance that Italian banks use anywhere from 9 to 22 non-

defaulting categories and from 1 to 4 defaulting categories. Jacobson et al. (2006) provide

evidence that the internal rating systems of the two major Swedish banks that they

consider not only differ with respect to their number of classes but also with respect to the

distribution of borrowers across the classes (the distribution of borrowers in one system

being more normally shaped than the other).24

There are differing motivations for working with a higher versus a lower number of classes

or, given a number of classes, for choosing a particular distribution of firms across the

classes. For instance, whereas a greater number of classes allows finer distinctions to be

made between firms, a system with a high number of classes may lead to anomalies

where the observed frequency of failure for firms in higher-risk classes is lower than for

firms in lower-risk classes.25 In spite of this, internal rating systems with larger numbers of

classes are generally seen as more valuable for pricing and for capital allocation.

However, to our knowledge, no paper has explicitly tested whether such systems are

indeed better at differentiating failures from non-failures.

In this section we use the NBB model to investigate the impact of the number of rating

classes and the distribution of borrowers across classes on model power. We examine

nine rating systems based on three different numbers of classes (seven, ten, and

seventeen), where for each given number of classes, we use three different distributions

24 One of these banks uses a fifteen-class system and the other a seven-class system. The latter bank
typically had 50-60 percent of its borrowers classified in one class (class 4).
25 See footnote 8 above. Carey and Tracey (1998) report that the choice of the number of classes may also
be influenced by factors such as the business mix of the bank or the degree to which it makes uses of
analytical failure predictions.
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of firms across the classes. The NBB model is well suited for this exercise since it

produces a continuous score, which makes it amenable to varying the distribution of firms

across classes in any desired way.26

For each given number of classes, we examine three types of credit risk distributions. One

is constructed to resemble the distribution generated by one of our vendor models which

produces a finite number of credit scores. A second distribution mirrors the 1983-2005

distribution of firms across Moody's credit ratings (see Moody's, 2006), when the ratings

are grouped so that the total number of ratings equals our number of classes. The final

distribution is an equal distribution of firms across classes. We would expect the internal

rating systems based on the vendor model and the Moody's distributions to be more

powerful and/or profitable than the internal rating systems based on the equal

distribution.27

The results, which are shown in Table 6a, reveal somewhat more modest differences

between internal rating systems than those observed in Tables 5a and 5b for differing

combinations of models. For each given number of classes, the vendor model distribution

appears to perform slightly better than the other two distributions, with the exception of the

ten-class system for the 5-year model, where the Moody's distribution performs better.

Also, increasing the number of classes for any given distribution type generally increases

the area under the ROC curve by more than modifying the distribution for a system with a

given number of classes. Indeed, Table 6b, which reports the results of significance tests

for differences in areas under the ROC curves for different system pairs, indicates that

increasing the number of classes results in significant increases in the area under ROC

curves, whereas modifying the distribution of borrowers across classes less frequently

results in a significant change. This table shows that for each distribution, the increase

from seven to ten, then from ten to seventeen classes, almost always produces significant

increases in the ROC curve area. This result is interesting because, in the case of the

vendor and Moody's distributions, the impact of an increase in the number of classes on

the ROC area was not clear a priori (for the equal distribution, it was clear that such an

26 We have also repeated this exercise with two of our other models, and the results are similar to those
reported here for the NBB model.
27 For the vendor model and Moody's distributions, we have also experimented with different ten-class
systems by imposing various degrees of granularity for the ten classes. Whereas Hanson and Schuermann
(2006) find that systems which are more granular at the higher-risk end of the spectrum are better from the
viewpoint of PD estimation, we do not find that such systems are significantly more powerful than the ten-class
systems that we use.
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increase would raise the ROC area given the concavity of the ROC curve).28 On the other

hand, it is only when moving from the equal distribution to either the vendor model or the

Moody's distribution, and this for the one-year horizon, that the increase in the ROC-curve

area is significant. Differences in the areas for the vendor model and the Moody's

distributions are never significant.

Finally, the power and associated profit of all three distributions for the seventeen-class

system is close to the power and the profit of the model with the continuous distribution of

credit scores. This result indicates that the marginal gain of working with an internal rating

system based on more than seventeen classes would be negligible.

6. Conclusion

This paper uses balance sheet and bankruptcy data on small and medium-size Belgian

firms, together with four failure prediction models, to investigate several questions relating

to model performance, model disagreement, combining model predictions, and internal

rating system design. We find that despite differences in statistical methodologies, model

input, and model definition of failure, the four models under consideration (which include

two models offered by vendors, a model developed by the National Bank of Belgium, and

the Altman Z-score model for private firms) exhibit similar levels of power, and all models

perform very well at the one-year horizon. The similar performance of the models

suggests that the definition of failure (default versus bankruptcy) used to develop models

may matter less than previously thought, at least for European firms.

Nevertheless, the differences in performance across models are important. Our analysis

suggests that a switch from the least powerful to the most powerful model could produce a

significant monetary gain for a bank, as could combining the output of multiple models.

Disagreements across the models in the ranking of firms are also considerable, implying

that model choice can have a significant impact on loan pricing and origination decisions.

In addition, if disagreement in the ranking of defaulting firms between a weaker and a

stronger model is important enough, combining the output of the two models can still lead

to an increase in power relative to the stronger model. This implies that comparing the

size of Type-1 and Type-2 errors for two models is not sufficient to determine whether

gains can be obtained from combining the models' predictions. The specific identities of

28 That is, when one works with a system where the distribution of borrowers across classes is not equal, it is
possible to show that increasing the number of classes does not always increase the area under the ROC
curve. We have even found examples where an increase in the number of classes decreases this area.
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the firms falling in the Type-1 and Type-2 categories in each model are also important.

That is, the more defaulters that are "missing" from the highest-risk classes of one model

but that are "captured" in the highest-risk classes of another model, the more likely will it

be that a combination of the models will increase power relative to use of a single model.

Finally, our analysis suggests that the number of classes may be more important in the

design of internal ratings systems than is the distribution of firms across the classes. For

the models under consideration, the power obtained with a seventeen-class rating system

is already very close to the power associated with using the continuous output of the

model. Very little gain could be obtained from a further increase in the number of classes.
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Table 1: 1-year and 5-year bankruptcy rates across classes for the four models

Bankruptcy rates (%)
Class % of firms

NBB Model 1 Model 2 Z-score

1-year bankruptcy rates (2001 sample)

1 1.3 0.00 0.00 0.00 0.00
2 21.8 0.05 0.01 0.18 0.14
3 21.1 0.11 0.07 0.19 0.47
4 18.6 0.30 0.26 0.33 0.46
5 21.8 0.75 0.76 0.91 0.67
6 11.9 1.78 2.82 2.00 1.76
7 3.5 9.22 6.48 6.07 6.23

Total 100.0 0.79 0.79 0.79 0.79

1-year bankruptcy rates (2004 sample)

1 1.4 0.00 0.00 0.00 0.00
2 21.5 0.00 0.01 0.06 0.05
3 21.5 0.09 0.06 0.11 0.25
4 18.8 0.22 0.16 0.20 0.45
5 22.0 0.34 0.43 0.57 0.40
6 11.6 1.44 2.00 1.13 1.28
7 3.3 7.85 5.52 6.85 5.26

Total 100.0 0.56 0.56 0.56 0.56

5-year bankruptcy rates (2001 sample)

1 1.5         0.96         0.00         1.20         0.48
2 21.8         0.75         0.50         1.17         1.71
3 22.8         1.37         1.42         1.60         2.80
4 19.4         2.93         2.65         3.04         3.29
5 19.9         4.72         5.77         4.47         4.14
6 11.3         8.26         8.43         6.81         5.66
7 3.2       18.05       14.42       19.43       12.30

Total 100.0         3.52         3.52         3.52         3.52

The table shows the distribution of firms and the 1-year and 5-year bankruptcy rates for the four
models in the 7-class rating system, which is based on the output of one of the two vendor
models.
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Table 2: Power of each model (area under the 1-year and 5-year ROC curves) and profit
associated with benchmark parameters (number of basis points, in parenthesis)

Model 1-year ROC curve (2004) 5-year ROC curve (2001)

NBB 0.876 0.743
(126)

Model 1 0.868 0.751
(124)

Model 2 0.833 0.713
(120)

Z-score 0.779 0.636
(113)

The profit for a five-year loan is not calculated, as it would require considerably more assumptions
than those made for the one-year horizon. Chi-square tests reject the null hypothesis that the
areas under any given pair of ROC curves are equal (5% level), except the areas under the ROC
curves of the NBB model and Model 1 at the 1-year and 5 -year horizons (test statistics = 0.42 and
1.20, with associated p-values of 0.52 and 0.28, respectively).

Table 3a: Benchmark parameter assumptions, used to convert ROC figures into basis
points

Variable Baseline value

Interest spread (per annum) 01.25%
Underwriting fees (up front) 00.50%
Workout fees (on default) 02.00%
LGD (on default) 35.00%
1-year PD 02.00%
Risk-free rate 04.00%
Additional relationship benefit 00.00%

Table 3b: Profit of no screening for differing assumptions about 1-year PD, interest spread
and LGD (other variables kept at benchmark values)

1-year PD Interest spread LGD Profit of no screening

2% 1.25% 35.00% 096 bps
1% 1.25% 35.00% 133 bps
3% 1.25% 35.00% 060 bps
2% 0.50% 35.00% 026 bps
2% 2.00% 35.00% 167 bps
2% 1.25% 45.00% 077 bps
2% 1.25% 50.00% 168 bps
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Table 4a: Disagreement for high-risk firms (2004)
Percentage of class-7 firms of a given model classified as 1, 2, 3 or 4 by another model

Class 7 Class 1, 2, 3 or 4 % of class-7 firms

NBB Model 1 16.3
Model 2 14.5
Z-score 16.4

Model 1 NBB 8.7
Model 2 15.6
Z-score 33.2

Model 2 NBB 18.1
Model 1 19.0
Z-score 29.3

Z-score NBB 18.4
Model 1 26.6
Model 2 11.5

Table 4b: Disagreement for low-risk firms (2004)
Percentage of class-1 firms of a given model classified as 4, 5, 6 or 7 by another model

Class 1 Class 4, 5, 6 or 7 % of class-1 firms

NBB Model 1 1.4
Model 2 36.7
Z-score 54.2

Model 1 NBB 0.5
Model 2 18.9
Z-score 21.9

Model 2 NBB 34.3
Model 1 29.4
Z-score 42.3

Z-score NBB 7.5
Model 1 7.7
Model 2 44.2
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Table 5a: Power of different combinations of models (area under the 1-year ROC curve) and
profits associated with benchmark parameters (number of basis points, in parenthesis)

Combination Min. 1 Max. 1 Median
Median
rounded
down 2

Median
rounded

up 2
Average

Average
rounded
down 2

Average
rounded

up 2

1 model

NBB (N) 0.876
(126)

- - - - - - -

Model 1 (M1) 0.868
(124)

- - - - - - -

Model 2 (M2) 0.833
(120)

- - - - - - -

Z-score (Z) 0.779
(113)

- - - - - - -

2 models

N - M1 0.878
(128)

0.898
(130)

- - - 0.908
(132)

0.897
(132)

0.896
(127)

N - M2 0.861
(124)

0.892
(131)

- - - 0.898
(130)

0.891
(130)

0.886
(126)

N - Z 0.854
(123)

0.855
(125)

- - - 0.880
(126)

0.867
(126)

0.871
(125)

M1 - M2 0.862
(123)

0.880
(127)

- - - 0.894
(130)

0.886
(130)

0.880
(125)

M1 - Z 0.847
(120)

0.871
(122)

- - - 0.890
(127)

0.879
(123)

0.878
(127)

M2 - Z 0.808
(115)

0.858
(126)

- - - 0.855
(121)

0.844
(121)

0.848
(118)

3 models

N - M1 - M2 0.867
(122)

0.901
(134)

0.899
(127)

- - 0.916
(132)

0.901
(131)

0.908
(128)

N - M1 - Z 0.861
(120)

0.886
(130)

0.894
(127)

- - 0.911
(130)

0.901
(127)

0.895
(130)

N - M2 - Z 0.845
(118)

0.879
(131)

0.883
(131)

- - 0.899
(127)

0.892
(127)

0.885
(126)

M1 - M2 - Z 0.840
(118)

0.882
(130)

0.886
(131)

- - 0.901
(128)

0.892
(127)

0.883
(126)

4 models

N - M1 - M2 - Z 0.852
(119)

0.890
(133)

0.914
(132)

0.903
(131)

0.906
(132)

0.917
(131)

0.907
(128)

0.900
(130)

Notes:
1 Taking the minimum implies selecting the lowest number class (i.e., lower-risk class). Taking the
maximum implies selecting the highest number class (i.e., higher-risk class).
2 Rounding "up" implies rounding to the higher number class (i.e., higher-risk class). Rounding
"down" implies rounding to the lower number class (i.e., lower-risk class).
3 Profit of no screening is equal to 96 bps
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Table 5b: Power of different combinations of models (area under the 5-year ROC curve)

Combination Min. 1 Max. 1 Median
Median
rounded
down 2

Median
rounded

up 2
Average

Average
rounded
down 2

Average
rounded

up 2

1 model

NBB (N) 0.743 - - - - - - -

Model 1 (M1) 0.751 - - - - - - -

Model 2 (M2) 0.713 - - - - - - -

Z-score (Z) 0.636 - - - - - - -

2 models

N - M1 0.754 0.763 - - - 0.776 0.769 0.766

N - M2 0.734 0.758 - - - 0.767 0.760 0.758

N - Z 0.702 0.720 - - - 0.738 0.728 0.729

M1 - M2 0.745 0.756 - - - 0.772 0.761 0.766

M1 - Z 0.714 0.725 - - - 0.749 0.740 0.737

M2 - Z 0.685 0.699 - - - 0.709 0.701 0.705

3 models

N - M1 - M2 0.743 0.767 0.774 - - 0.787 0.776 0.776

N - M1 - Z 0.718 0.741 0.767 - - 0.777 0.766 0.763

N - M2 - Z 0.709 0735 0.741 - - 0.758 0.746 0.746

M1 - M2 - Z 0.718 0.738 0.744 - - 0.764 0.750 0.752

4 models

N - M1 - M2 - Z 0.719 0.748 0.779 0.767 0.773 0.783 0.767 0.772

Notes:
1 Taking the minimum implies selecting the lowest number class (i.e., lower-risk class). Taking the
maximum implies selecting the highest number class (i.e., higher-risk class).
2 Rounding "up" implies rounding to the higher number class (i.e., higher-risk class). Rounding
"down" implies rounding to the lower number class (i.e., lower-risk class).
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Table 6a: Power of the NBB model (area under the 1-year and 5-year ROC curves) and
associated profits (number of basis points, in parenthesis)

Distribution of firms based on

Number of classes Vendor model
distribution 1 Moody's distribution 2 Equal distribution 3

1-year bankruptcy rates (2004 sample)

7 0.876 0.874 0.858
(126) (123) (125)

10 0.883 0.882 0.873
(130) (128) (130)

17 0.887 0.885 0.883
(130) (130) (130)

Continuous 0.889
(130)

5-year bankruptcy rates (2001 sample)

7 0.743 0.741 0.742

10 0.748 0.750 0.746

17 0.752 0.752 0.751

Continuous 0.753

Notes:
1 The vendor model distribution for the seven-class system is the distribution used in Tables 1 to 5.
It is based on the output of one of the vendor models (see Section 2).
2 The Moody's distribution is a distribution that mirrors the 1983-2005 distribution of Moody's credit
ratings (see Moody's, 2006), with the distribution of credit ratings across classes changing as the
number of classes varies.
In the 7-class system, credit ratings are grouped as follows: class 1 = Aaa, class 2 = Aa, class 3 =
A, class 4 = Baa, class 5 = Ba, class 6 = B, class 7 = Caa and below.
In the 10-class system, credit ratings are grouped as follows: class 1 = Aaa, class 2 = Aa1-Aa2,
class 3 = Aa3-A1, class 4 = A2-A3, class 5 = Baa1-Baa2, class 6 = Baa3-Ba1, class 7 = Ba2-Ba3,
class 8 = B1-B2, class 9= B3-Caa1, class 10 = Caa2 and below.
In the 17-class system, credit ratings are grouped as follows: class 1 = Aaa, class 2 = Aa1, class 3
= Aa2, class 4 = Aa3, class 5 = A1, class 6 = A2, class 7 = A3, class 8 = Baa1, class 9= Baa2,
class 10 = Baa3, class 11 = Ba1, class 12 = Ba2, class 13 = Ba3, class 14 = B1, class 15 = B2,
class 16 = B3, class 17= Caa1 and below.
3 The equal distribution is a distribution that allocates the same percentage of firms across
classes.
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Table 6b: Chi-square values associated with the tests comparing the areas under the ROC
curve of pairs of internal rating systems

Distribution of firms compared

Number of classes Vendor model vs.
Moody's

Vendor model vs.
equal

Moody's vs.
equal

1-year bankruptcy rates (2004 sample)

7              0.13             31.42 ***            21.06 ***

10              0.09             10.91 ***            11.85 ***

17              0.70               8.04 ***              5.94 **

5-year bankruptcy rates (2001 sample)

7              0.81               0.01              0.42

10              1.55               0.99              6.83 ***

17              0.00               0.25              0.37

Number of classes compared

Distribution of firms
7 vs. 10 10 vs. 17 7 vs.17

1-year bankruptcy rates (2004 sample)

          Vendor               3.16 *               5.90 **             20.98 ***

          Moody's               5.12 **               5.51 **             17.72 ***

          Equal             40.75 ***             29.81 ***             92.78 ***

5-year bankruptcy rates (2001 sample)

          Vendor             26.59 ***               2.05             52.25 ***

          Moody's               6.46 **             10.31 ***             39.25 ***

          Equal               6.65 ***             20.10 ***             36.23 ***

*** Significant at the 1% level, ** significant at the 5% level, * significant at the 10% level. See also
footnotes at the bottom of Table 6a.
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Fig.1: 1-year ROC of the four models based on the
7-class system (2004)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Non-failing firms ordered by model score percentile

Pe
rc

en
ta

ge
 o

f f
ai

lin
g 

fir
m

s

NBB Model 1 Model 2

Z-score Random choice

Fig.2: 5-year ROC of the four models based on the
7-class system (2001)
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Appendix: ROC curves

The ROC (Receiver Operating Characteristic) curve is frequently used when comparing

the accuracy of credit risk models. It is constructed by first ordering the non-failing firms

from worst (highest risk) to best (lowest risk) from left to right on the horizontal axis.  The

vertical axis represents the percentage of all failing firms that would be captured at each

percentile of non-failing firms on the horizontal axis. In other words,  if x p.c. of non-failing

firms (starting from the riskiest firm) were excluded from the sample, the vertical axis of

the ROC curve gives the percentage of failing firms that would also be excluded (because

they are ranked as equally risky or riskier than the least risky excluded non-failing firm).

ROC curves allow calculation of Type-1 and Type-2 errors at each point on the curve. The

Type-1 error, or the error of labelling a non-failing firm as failing, corresponds to the

percentage of non-failing firms excluded. The Type-2 error, or the error of labelling a

failing firm as non-failing, equals the percentage of failing firms that is not excluded from

the sample.

ROC curve illustration
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When the ROC curve of one model lies strictly above the ROC curve of another model

(i.e., to the northwest), the former has unambiguously a lower Type-2 error rate for any

given Type-1 error rate. When the ROC curves for two models cross, neither strictly



33.

dominates the other. In this situation, which model would be preferred would depend on

the specific application one is interested in.

A convenient measure for summarizing the graph of the ROC curve is the area under the

curve, which is calculated as the proportion of the area below the curve relative to the total

area of the unit square. The area under the ROC curve may range from 0.5 (random

model) to 1.0 (model with perfect discrimination). The area may be interpreted as the

probability that a randomly chosen failing firm is classified in a riskier class than a

randomly chosen non-failing firm (Stein, 2002).


